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Flexoelectricity is the electromechanical coupling effect between strain gradient and electronic polarization. It is 
always allowed by symmetry because a strain gradient automatically breaks inversion symmetry. This is unlike the 
case of piezoelectricity, which can only occur in noncentrosymmetric materials. Flexoelectricity can have a 
significant effect on the functional properties of dielectric nanostructures due to the much larger strain gradient at 
the nanoscale than at macroscopic scales. The possibility of large effects at the nanoscale, with application to 
functional nanodevices, has triggered a recent increase of interest in flexoelectricity. [1-12] The development of 
nanoscience and nanotechnology requires a better understanding of flexoelectricity, and a better ability to utilize 
flexoelectric effects for a variety of purposes.  Despite growing experimental interest, there have been relatively 
few theoretical studies of flexoelectricity, especially in the context of first-principles calculations. This is in part 
due to challenges in treating strain gradients in the calculations.   
 
Direct first-principles calculations of flexoelectricity require the use of supercells with periodic boundary 
conditions, whereas a strain gradient, by definition, results in an inhomogeneous distribution of lattice parameters 
and thus a breaking of the lattice periodicity. We introduce an “accordion” supercell in which the strain gradient is 
itself periodic, thus allowing the recovery of the periodic boundary condition (Fig.1). We calculate the longitudinal 
flexoelectric response in rhombohedral BaTiO3 and tetragonal SrTiO3 perovskites at constant electric displacement 
boundary condition. [4] Based on this approach, the calculation of the transverse flexoelectric response was 
recently developed. [7, 12] This method is applicable even to low-symmetry systems. It offers a promising 
approach to determine the full flexoelectric tensor components for dielectric materials from first principles. 
However, the origin of the flexoelectrity and the surface role is unclear from this direct first-principles method. 

 
In order to understand the origin of the flexoelectricity, we developed a complete first-principles theory of 
flexoelectric tensors, formulated in such a way that the tensor elements can be computed directly in the context of 
density-functional calculations. [6, 10] We reveal that the origin of flexoelectricity is from the electronic 
contribution due to octupoles (Q(3)) and the lattice contribution due to the interaction between effective charges 
(Q(1)) and the atomic displacements induced by the strain gradient (N), as well as the interaction between  
quadrupoles (Q(2))  and the displacements induced by the strain (Γ), as can be seen in Eq. (1). We find that surfaces 
have contributions to the total flexoelectric response, which is related to dependence of the surface work function 
on local strain. We propose a method to calculate the flexoelectric coefficients in supercells with different 
orientations by using first-principles methods (Fig.2), including lattice and electronic contributions, under fixed E 
or fixed D electric boundary conditions in different parts of the procedure.  
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For the time being, it is still challenging for both theory and experiment to obtain the full flexoelectric tensor 
components for even the simplest cubic crystal.  Combining the first-principles calculations and experiment to 
obtain the full flexoelectric tensor will be discussed.  



 
 

  
 
Fig.1  (a) Supercells for direct first-principles 
calculations without strain gradient;  (b) strain 
gradient profile in the supercells; (c) the atomic 
displacement after relaxation (atom Ba is fixed, 
red) in BaTiO3  (green:O, blue:Ti). 

Fig.2  Original (a) and 45o-rotated (b) supercell 
for first-principles calculation; (c) change of 
charge-density distribution (a) in SrTiO3 supercell 
(original frame) at fixed D. 
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